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Abstract

It is tremendously difficult for sparse iterative solvers to fully utilize the computing capability of a supercomputer be-
cause of communications, especially those global ones. The global/collective communications are usually necessary
when computing the small dots—inner products—on distributed supercomputers, and it is easy to dominate the entire
solution time if it is unavoidable. Communications can be partially hidden by some computations, but it is difficult
for one to hide all parts of a huge object by a tinny one. When each processor is assigned to the same amount of com-
putations, we observe that on a Dawning 5000A, the global communication time increases in the order of P4/5 against
the number of processors, P, while the local communication for some structured sparse matrix vector multiplications
increases in the order P1/2.5. The order of P4/5 depends on the complexity of the MPI reduce algorithm for collective
communications, while the order P1/2.5 depends on the computer architecture, especially how the processors connect
with each others. This brings immediately two challenging problems, (a) how to design an optimal algorithms for col-
lective communications, and (b) how to get an optimal assembly of CPUs/GPUs with multiple constraints. There may
be fertile opportunities to (c) develop inner product free iterative methods (not necessary Krylov type) without losing
accuracy. When taking preconditioning and hierarchical techniques into account, an unconventional thinking may
lead to better direction: using Krylov methods as local sub-solvers and classical iterative methods as main solvers,
(d) which may redefine the role of some classical iterative methods in a modern time. In words, the small dots bring
great challenges as well as potential collaborative opportunities for numerical analysts, computer scientists, software
engineers and vendors.
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Problems related to the small dots computations

1. Accurate and fast MPI reduce algorithms for collective communications.
2. Optimal assembly of CPUs/GPUs with multiple constraints.
3. Inner product free iterative solvers for high performance distributed computing.
4. Accurate and fast inner product computations on distributed computers.
5. Synchronization avoiding/hiding algorithms.
6. New framework of preconditioning with classical iterative methods.
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(a) Timing for a Krylov method method(left)
and corresponding parallel version(right). T:
total time, G: Global communication time,
T-G: time excluding global communication,
M+L: matrix vector multiplication computa-
tion and (local) communication time.
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(b) The role of matrix vector multiplications
and global communication time in a Krylov
method(left) and corresponding parallel ver-
sion. G: global communication times. M+L:
matrix vector multiplication computation and
(local) communication time.
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(c) Global communication time for a Krylov
method (blue) and corresponding parallel
version(red). The data shows the underlying
MPI reduce operations have a complexity of
P4/5. As shown in (b), G � M + L, when P
is large. Results from [27]
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